Stromversorgungs-Subsysteme für Photoplethysmographie-Systeme zur Vitalzeichen-Überwachung – Teil 2

Der vorliegende, aus zwei Teilen bestehende Artikel stellt validierte Designs für getaktete Stromversorgungen zur Vitalzeichen-Fernüberwachung an Patienten vor. Darin kommen Biosensoren zum Einsatz, die sich durch einen heraus-

> Autoren: Felipe Neira und Marc Smith Analog Devices www.analog.com

ragenden Signal-Rauschabstand auf der Systemebene auszeichnen.

Während es im ersten Teil um eine diskrete Lösung mit optimaler Performance ging, wird im zweiten Teil eine integrierte Lösung für Anwendungen mit beengten Platzverhältnissen präsentiert.

- Sie erfahren, wie Sie anhand der Anforderungen eines PPG-Systems die richtige Stromversorgungs-Konfiguration auswählen.
- Beschreibung getakteter Stromversorgungs-Referenzschal-

tungen in diskreter (Teil 1) oder integrierter Ausführung (Teil 2)

- Vorstellung einer Methodik zum Prüfen der Leistungsfähigkeit von Stromversorgungs-Systemen, mit der sich das System in verschiedenen Anwendungsfällen und unter transienten Lastbedingungen testen lässt.
- Checkliste zum Validieren der Implementierung.
- Vermittlung von Kenntnissen zur Beseitigung von Implementierungsproblemen.

Ein PPG-Gerät kann zum Messen von Änderungen des Blutvolumens eingesetzt werden, um daraus Vitalzeichen-Informationen wie etwa die Sauerstoffsättigung des Blutes oder die Herzrate abzuleiten. In diesem Teil geht es um eine integrierte, für Applikationen mit knappen Platzverhältnissen konzipierte Lösung, in welcher der Baustein MAX86141, ein AFE für optische Pulsoximeter und Herzratensensoren, zum Einsatz kommt.

Analog Devices beschleunigt und vereinfacht den Entwicklungsprozess durch das Angebot fertig validierter, d. h. real angefertigter und geprüfter Designs von Stromversorgungs-Subsystemen, mit denen der Signal-Rauschabstand (Signal-to-Noise Ratio, SNR) der einzelnen Biosensing-AFEs optimal bewahrt wird.

Zur Erinnerung sind nachfolgend Details der Stromversorgungs-Schaltungen aufgeführt, ergänzt durch eine Validierungs-Checkliste

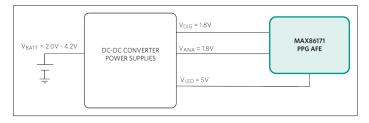


Bild 1: Blockschaltbild eines typischen PPG-Geräts zur Fernüberwachung von Patienten-Vitalzeichen

Grenzwerte des Designs

Eingang		Ausgang (V _{DIG} , V _{ANA} , V _{LED})		Rauschen, RTO
V_{IMIN}	V_{IMAX}	V_{OMIN}	V _{OMAX}	$V_{PP(max)}$
3,0 V ¹	4,2 V ¹	1,6 V	2,0 V	30 mV _{PP}
2,0 V ²	3,4 V ²	1,6 V	2,0 V	30 mV _{PP}
		4,7 V	5,3 V	20 mV _{PP}

Anmerkungen

- 1 Sekundärbatterie (LiPo)
- 2 Primärbatterie (Li-Knopfzelle)

Tabelle 1

Designkonfiguration

Design-Konfiguration	Batterie- Implementierung	Anmerkungen zum Leiterplatten-Layout
Diskret	Primärbatterie (Knopfzelle) Sekundärbatterie (Li und LiPo)	Implementierung mit separaten diskreten Schaltungen
Integriert	Sekundärbatterie (Li und LiPo)	Verwendung einer einzigen integrierten Schaltung zur Minimierung der Leiterplattenfläche; ausschließlich für Sekundärbatterien geeignet.

Tabelle 2

Wichtige Bauelemente

Bez.	Bauteil	Beschreibung
U1	Gleichspannungswandler	Leistungswandler-Baustein (MAX77642)
L1	Induktivität (2,2 µH)	Induktivität mit niedrigem effektivem Serienwiderstand (ESR) als Energiespeicher*
C1	Kondensator (22 µF)	Kondensator mit niedrigem effektivem Serienwiderstand (ESR) als Energiespeicher*

^{*}Bei L1 und C1 handelt es sich um speziell ausgewählte passive Bauelemente, die entscheidend für die Leistungsfähigkeit des Gleichspannungswandlers sind.

Tabelle 3

und eine Fehlerbeseitigungs-Anleitung, die bei Bedarf Hilfestellung beim Schaltungsdesign leisten kann. Bild 1 zeigt dazu das Blockschaltbild einer Standard-Stromversorgungslösung, wie sie in vielen Anwendungen für die Patienten-Fernüberwachung anzutreffen ist.

Grenzwerte des Designs (siehe Tabelle 1)

Designkonfiguration (siehe Tabelle 2)

Beschreibung des integrierten Designs

Dieses mit einem DC/DC-PMIC (Power Management Integrated

Circuit) bestückte Design dient zur Regelung dreier Ausgangsspannungen für ein Subsystem zur Fernüberwachung von Patienten-Vitalzeichen. Der IC enthält einen Auf-/Abwärtsregler (Buck-Boost Regulator) in SIMO-Bauart (Single-Inductor Multiple-Output), der die Ausgangsspannungen mithilfe einer einzigen Induktivität erzeugt, um unter Wahrung eines hohen Wirkungsgrads für minimale Gesamt-Lösungsabmessungen zu sorgen.

Die Schaltung zeichnet sich durch gute Netz- und Lastregeleigenschaften aus und bietet gleichzeitig das nötige niedrige Ausgangsrauschen, damit die SNR-Eigenschaften der verwendeten Biosensoren nicht

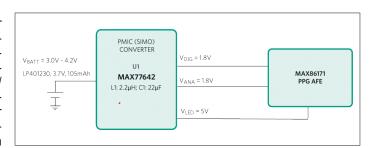


Bild 2: Blockschaltbild eines PPG-Subsystems unter Verwendung eines integrierten Stromversorgungs-Bausteins vom Typ MAX77642

beeinträchtigt werden. Die Stromversorgung erfolgt durch eine wiederaufladbare Lithium-Polymerbatterie. Bild 2 zeigt das PPG-Subsystem mit einem integrierten Stromversorgungs-Baustein. (Tabelle 3)

PMIC-basierte, getaktete Stromversorgung für 1,8 V/1,8 V/5,0 V

Die folgende Schaltung auf der Grundlage des PMIC MAX77642 bietet ein- und ausgangsseitig die

Schritt	Aktion	Ablauf	Messung	Hilfe erforderlich?
1	DC-Eingangsspannung überprüfen, LiPo-Akku LP401230	Messen der Batteriespannung	Wertebereich: 3,0 V – 4,2 V	Anweisungen zur Fehlerbeseitigung
2	DC-Eingangsspannung überprüfen, LiPo-Akku LP401230	Messen der Gleichspannung an C _{IN}	Wertebereich: 3,0 V – 4,2 V	
3	DC-Ausgangsspannung V _{OUT} überprüfen	Messen der DC-Ausgangsspannung SBB1 bezogen auf GND	Analoger Wertebereich (1,8 V): 1,71 V – 1,89 V	
4		Messen der DC-Ausgangsspannung SBB0 bezogen auf GND	Digitaler Wertebereich (1,8 V): 1,71 V – 1,89 V	
5		Messen der DC-Ausgangsspannung SBB2 bezogen auf GND		
6	Prüfen des Ausgangsrauschens (analog) am 1,8-V-Ausgang	Mit unsymmetrischem 10x-Taskopf (mit Pigtail) oder differenziellem aktivem Tastkopf an C ₅	Welligkeit sollte kleiner als 20 mV _{PP} sein	
			Schaltspitzen sollten kleiner als 30 mV _P sein	
7	Prüfen des Ausgangsrauschens (digital) am 1,8-V-Ausgang	Mit unsymmetrischem 10x-Taskopf (mit Pigtail) oder differenziellem aktivem Tastkopf an C ₄	Welligkeit sollte kleiner als 20 mV _{PP} sein	
			Schaltspitzen sollten kleiner als 30 mV _P sein	
8	Prüfen des Ausgangsrauschens (analog) am 5,0-V-Ausgang	Mit unsymmetrischem 10x-Taskopf (mit Pigtail) oder differenziellem aktivem Tastkopf an C ₆	Welligkeit sollte kleiner als 20 mV _{PP} sein	
			Schaltspitzen sollten kleiner als 30 mV _P sein	

Tabelle 4

Gemessene Eingangsspannung	Mögliche Ursachen	Maßnahmen	Anmerkungen
0 Volt bzw. kein Messwert	Batterie nicht geladen oder defekt	Batterie abklemmen und Spannung überprüfen. Werden 0 V gemessen, Batterie aufladen.	Ersetzen Sie die Batterie, wenn sie sich nicht aufladen lässt.
	Keine Verbindung zur Batterie (Leitung IN oder GND)	Batterie abklemmen und Durchgängigkeit der Verbindung zwischen Batterieanschluss und Eingang des Bausteins überprüfen.	Möglicherweise liegt eine Leitungs- Unterbrechung auf der Leiterplatte vor.
	Kurzschluss zwischen Eingangskondensator und Masse	Batterie abklemmen und Durchgängigkeit entlang des Kondensators überprüfen.	Möglicher Kurzschluss auf der Leiterplatte
Messwert < 2,8 V	Batterie unzureichend geladen oder defekt	Batterie abklemmen und Spannung prüfen. Bei weniger als 2,8 V Batterie aufladen.	Ersetzen Sie die Batterie, wenn sie sich nicht aufladen lässt.
2,8 V ≤ Messwert ≤ 4,2 V		Keine Maßnahme	Funktionsfähigkeit gegeben
Messwert ≥ 4,2 V	Batterie defekt	Batterie ersetzen	

Tabelle 5

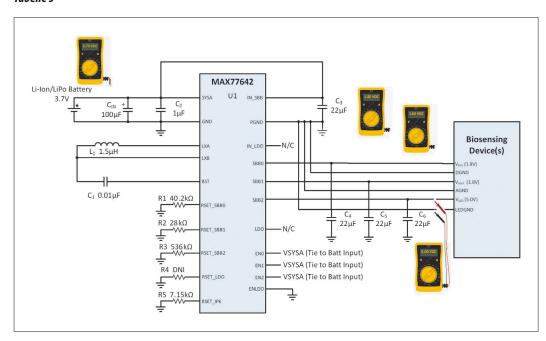


Bild 3: Getaktete Stromversorgung auf Basis des MAX77642 für 1,8 V, 1,8 V und 5,0 V zum Einsatz in der Fernüberwachung von Patienten-Vitalzeichen

Bild 4: Integrierte Stromversorgung für die Fernüberwachung von Patienten-Vitalzeichen

nötigen typischen Werte für den Einsatz in Anwendungen für die Fernüberwachung von Patienten-Vitalzeichen. Wie in Bild 3 erkennbar ist, lassen sich die korrekten Spannungen am Ein- und Ausgang mithilfe eines Digitalmultimeters (DMM) überprüfen. Die Ausgangsspannungen der Stromversorgung können unter dem Einfluss verschiedener Faktoren variieren. Dies sind beispielsweise:

- Zunehmende Entladung der Batterie
- Laständerungen (z. B. durch Wechsel der Betriebsart, Rückkehr aus dem Sleep-Modus o. ä.)

Validierungsplan zur getakteten Stromversorgung

In Bild 4 ist der PMIC des Typs MAX77642 für die Fernüberwachung der Vitalzeichen von Patienten zu sehen.

Validierungsplan zur integrierten getakteten Stromversorgung

Die folgende Tabelle eignet sich als Checkliste zum Validieren der Funktion der auf dem MAX77642 basierenden, getakteten Stromversorgung für 1,8 V/1,8 V/5,0 V, angeschlossen an eine Biosensing-Schaltung. (Tabelle 4)

Fehlerbeseitigungs-Anleitung zur getakteten Stromversorgung

Die in Bild 5 aufgeführten Fehlerbeseitigungs-Anweisungen leisten Hilfestellung beim Auftreten

Signalverlauf am Eingang	Mögliche Ursache	Maßnahmen	Anmerkungen
Amplitude ist nicht korrekt	Induktivität nicht verbunden, IN-Pin nicht verbunden	Batterie abklemmen und sämtliche Verbindungen mit DMM überprüfen	Leiterplatte reparieren, falls notwendig
Tastverhältnis ist nicht korrekt (fehlende Impulse)			
Impuls SSB0 fehlt	Kurzschluss zwischen EN0 und GND	Ausgang SSB0 auf 0 V überprüfen. Batterie abklemmen und Durchgängigkeit zwischen EN0-Pin und GND überprüfen.	Möglicher Kurzschluss auf der Leiterplatte
Impuls SSB1 fehlt	Kurzschluss zwischen EN1 und GND	Ausgang SSB1 auf 0 V überprüfen. Batterie abklemmen und Durchgängigkeit zwischen EN0-Pin und GND überprüfen.	Möglicher Kurzschluss auf der Leiterplatte
Impuls SSB2 fehlt	Kurzschluss zwischen EN2 und GND	Ausgang SSB2 auf 0 V überprüfen. Batterie abklemmen und Durchgängigkeit zwischen EN0-Pin und GND überprüfen.	Möglicher Kurzschluss auf der Leiterplatte
Tastverhältnis ist nicht korrekt (Impulsbreiten nicht korrekt)	Widerstände zur Wahl der Ausgangsspannung; Baustein defekt	Feststellen, welcher SSBx-Kanal zur falschen Impulsbreite gehört, und die folgenden Schritte abarbeiten	
Impulsbreite SSB0 unkorrekt	Kurzschluss zwischen RSET_SSB0 und GND (SSB0 V _o = 0,5 V)	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse $40,2~k\Omega$ beträgt.	Falscher/defekter Widerstand. Möglicherweise Kurzschluss auf der Leiterplatte.
	Keine Verbindung zum Pin RSET_SSB0 (SSB0 VO = 5,2 V)	Batterie abklemmen und auf Durchgängigkeit zwischen Widerstand und RSET_SSB0- Pin prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte oder fehlerhafte Lötverbindung.
	Falscher Widerstandswert RSET_SSB0	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse $40.2 \text{ k}\Omega$ beträgt.	Falscher oder defekter Widerstand eingebaut.
Impulsbreite SSB1 unkorrekt	Kurzschluss zwischen RSET_SSB1 und GND (SSB1 V _o = 0,5 V)	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse 28 kΩ beträgt.	Falscher bzw. kurzgeschlossener Widerstand. Möglicherweise Kurzschluss auf der Leiterplatte.
	Keine Verbindung zum Pin RSET_SSB1 (SSB1 V ₀ = 5,2 V)	Batterie abklemmen und auf Durchgängigkeit zwischen Widerstand und RSET_SSB1-Pin prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte oder fehlerhafte Lötverbindung.
	Falscher Widerstandswert RSET_SSB1	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse 28 k? beträgt.	Falscher oder defekter Widerstand eingebaut.
Impulsbreite SSB2 unkorrekt	Kurzschluss zwischen RSET_SSB2 und GND (SSB2 V ₀ = 0,5 V)	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse 536 kΩ beträgt.	Falscher bzw. kurzgeschlossener Widerstand. Möglicherweise Kurzschluss auf der Leiterplatte.
	Keine Verbindung zum Pin RSET_SSB2 (SSB2 V ₀ = 5,5 V)	Batterie abklemmen und auf Durchgängigkeit zwischen Widerstand und RSET_SSB2-Pin prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte oder fehlerhafte Lötverbindung.
	Falscher Widerstandswert RSET_SSB2	Batterie abklemmen und prüfen, ob Widerstandswert zur Masse 536 kΩ beträgt.	Falscher oder defekter Widerstand eingebaut.
Verzerrter Signalverlauf mit abgerundeter steigender Flanke	Defekte Verbindung zur Induktivität	Verbindung der Induktivität reparieren. Induktivität ersetzen.	Defekte Verbindung kann höheren Leitungswiderstand verursachen.

Tabelle 6

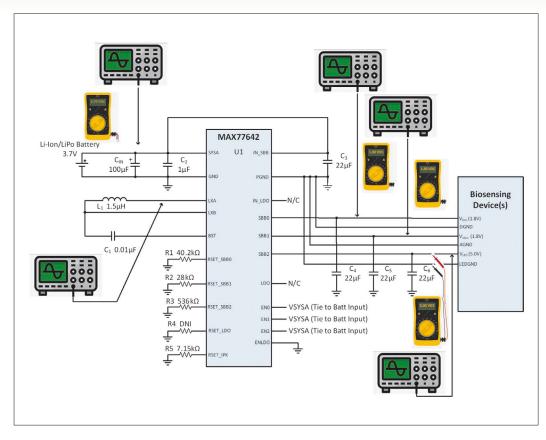


Bild 5: Hilfsmittel zur Fehlerbeseitigung an der getakteten Stromversorgung

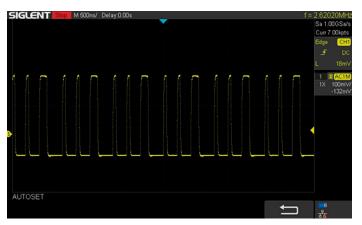
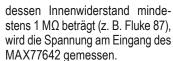


Bild 6: Oszillogramm eines typischen LXA-Signalverlaufs am MAX77642 bei Lastströmen (I_{ou}.) von 1,2 mA (SSB0 und SSB1) bzw. 126,1 mA (SSB2)


etwaiger Funktionsprobleme an der getakteten Stromversorgung für 1,8 V/1,8 V/5,0 V. Die Anleitung deckt die häufigsten Probleme ab, die bei der Implementierung solcher getakteten integrierten Stromversorgungs-Designs auftreten können.

Fehlerbeseitigung durchführen

an der getakteten Stromversorgungs-Schaltung auf Basis des MAX77642:

Schritt 1

Überprüfung der Eingangsspannung: Mit einem Digitalmultimeter,

Das Minuskabel (schwarz) muss dabei unbedingt mit der Masse, das Pluskabel (rot) dagegen mit dem "IN"-Pin des Bausteins verbunden werden. Sollte der Eingangs-Pin nicht ohne weiteres zugänglich sein, kann die Messung auch am Eingangskondensator C_{IN} erfolgen.

Zum Diagnostizieren und Beheben etwaiger Probleme kann die Tabelle 5 herangezogen werden:

Schritt 2

Überprüfung des Signalverlaufs an der Induktivität: Ein Oszilloskop oder ein digitales Speicheroszilloskop (DSO) wird an den LXA-Pin des MAX77642 angeschlossen. Ist der Eingangs-Pin nicht ohne weiteres zugänglich, kann die Messung auch an der Induktivität und dem Kondensator erfolgen.

Hinweis

Oszilloskop und Tastköpfe sollten eine Bandbreite von mindestens 200 MHz haben. Wenn die Schaltung korrekt funktioniert, sollte eine Abfolge von Impulsen mit minimalen Oszillationen an den steigenden und fallenden Flanken aufgezeichnet werden, wie es in Bild 6 zu sehen ist. Die Impulsfolge demonstriert das Zeitmultiplexing von drei getakteten Stromversorgungen, die sich eine gemeinsame Induktivität teilen (SIMO-Stromversorgung).

Anhand von Abweichungen von der idealen Impulsfolge lassen sich viele Probleme erkennen und beheben. Hierzu kann die Tabelle 6 herangezogen werden:

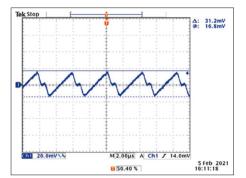


Bild 7: Oszillogramm der Ausgangswelligkeit des MAX77642 am Ausgang SSB1 (1,8 V analog) bei $V_{\rm in} = 4,2$ V und $I_{\rm out} = 100$ mA

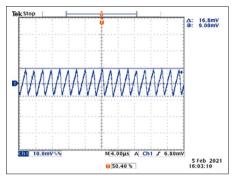


Bild 8: Bei korrekter Funktion sollte am Ausgang SSB1 eine Spannung von 1,8 V DC (analog) mit einer geringen überlagerten Welligkeit liegen

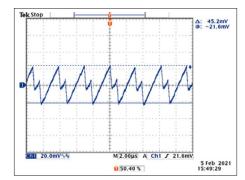


Bild 9: Oszillogramm der Ausgangswelligkeit des MAX77642 am Ausgang SSB2 (5,0 V) bei $V_{in} = 4,2 \text{ V}$ und $I_{out} = 100 \text{ mA}$

Gemessene Ausgangsspannung	Mögliche Ursachen	Maßnahmen	Anmerkungen
SSB0: 0 Volt bzw. kein Messwert	Keine Verbindung zwischen SSB0 und C _{OUT}	Batterie abklemmen und Durch- gängigkeit zwischen Ausgang und C _{OUT} überprüfen	Möglicherweise Leitungsunter- brechung auf der Leiterplatte.
	Kurzschluss zwischen Ausgangs- kondensator und Masse	Batterie abklemmen und auf Durchgängigkeit parallel zum Kondensator prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte.
SSB0: Messwert zu gering (< 1,71 V DC)	Falscher Induktivitätswert, Sättigung der Induktivität oder RSET_SSB0 mit falschem Widerstandswert.	Batterie abklemmen und Induktivitäts- und/oder Widerstandswerte überprüfen.	
1,71 V ≤ Messwert ≤ 1,89 V		Keine Maßnahme	Korrekte Funktion
Messwert zu hoch (> 1,89 V)	Falscher Widerstandswert von RSET_SSB0	Batterie abklemmen und Wert von RSET_SSB0 überprüfen	

Tabelle 7

Gemessene Ausgangsspannung	Mögliche Ursachen	Maßnahmen	Anmerkungen
SSB1: 0 Volt bzw. kein Messwert	Keine Verbindung zwischen SSB1 und C _{OUT}	Batterie abklemmen und Durchgängigkeit zwischen Ausgang und C _{OUT} überprüfen	Möglicherweise Leitungsunterbrechung auf der Leiterplatte.
	Kurzschluss zwischen Ausgangskondensator und Masse	Batterie abklemmen und auf Durchgängigkeit parallel zum Kondensator prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte.
SSB1: Messwert zu gering (< 1,71 V DC)	Falscher Induktivitätswert, Sättigung der Induktivität oder RSET_SSB1 mit falschem Widerstandswert.	Batterie abklemmen und Induktivitäts- und/oder Widerstandswerte überprüfen.	
1,71 V ≤ Messwert ≤ 1,89 V		Keine Maßnahme	Korrekte Funktion
SSB1: Messwert zu hoch (> 1,89 V)	Falscher Widerstandswert von RSET_SSB0	Batterie abklemmen und Wert von RSET_SSB0 überprüfen	

Tabelle 8

Gemessene Ausgangsspannung	Mögliche Ursachen	Maßnahmen	Anmerkungen
SSB2: 0 Volt bzw. kein Messwert	Keine Verbindung zwischen SSB1 und C _{OUT}	Batterie abklemmen und Durchgängigkeit zwischen Ausgang und C _{OUT} überprüfen	Möglicherweise Leitungsunterbrechung auf der Leiterplatte.
	Kurzschluss zwischen Ausgangskondensator und Masse	Batterie abklemmen und auf Durchgängigkeit parallel zum Kondensator prüfen.	Möglicherweise Kurzschluss auf der Leiterplatte.
SSB2: Messwert zu gering (< 4,75 V DC)	Falscher Induktivitätswert, Sättigung der Induktivität oder RSET_SSB2 mit falschem Widerstandswert.	Batterie abklemmen und Induktivitäts- und/oder Widerstandswerte überprüfen.	
4,75 V ≤ Messwert ≤ 5,25 V		Keine Maßnahme	Korrekte Funktion
SSB2: Messwert zu hoch (> 5,259 V)	Falscher Widerstandswert von RSET_SSB0	Batterie abklemmen und Wert von RSET_SSB0 RSEL überprüfen	

Tabelle 9

Schritt 3a

Überprüfung der Gleichspannung am Ausgang: Mithilfe eines DMM mit einem Innenwiderstand von 1 M Ω oder größer (z. B. Fluke 87) wird die Spannung am Ausgang des MAX77642 gemessen. Das

Minuskabel (schwarz) muss hierbei mit der Masse, das Pluskabel dagegen mit dem "OUT"-Pin des jeweiligen SSBx-Kanals des Bausteins verbunden werden. Sollte der Ausgangs-Pin nicht ohne weiteres zugänglich sein, können die Messleitungen auch an den jeweiligen Ausgangskondensator C_{OUT} angeschlossen werden.

Hilfestellung beim Diagnostizieren und Beheben etwaiger Probleme mit dem Ausgang SSB0 (1,8 V DC) kann die Tabelle 7 leisten. Hilfestellung beim Diagnostizieren und Beheben etwaiger Probleme mit dem Ausgang SSB1 (1,8 V DC) kann die Tabelle 8 leisten.

Hilfestellung beim Diagnostizieren und Beheben etwaiger Probleme mit dem Ausgang SSB2

Signalverlauf am Eingang	Mögliche Ursache	Maßnahmen	Anmerkungen
Welligkeitsamplitude zu hoch	Falscher Kapazitätswert, defekter Kondensator	Batterie abklemmen und mit DMM sämtliche Verbindungen überprüfen; Kapazitätswert messen	
Zu starkes Breitband-Rauschen	Zu hohe Last, Störgrößen aus der Umgebung	Last und Störbeeinflussungen aus der Umgebung prüfen	Differenzielle Tastköpfe am Ausgang verwenden, um die Störbeeinflussungen aus der Umgebung zu reduzieren
Übergangsspitzen zu hoch	Zu hohe Lastinduktivität, Eingangsstrom nicht angemessen	Leitungsinduktivität prüfen und Eingangsstrom mit Oszilloskop überprüfen	

Tabelle 10

Signalverlauf am Eingang	Mögliche Ursache	Maßnahmen	Anmerkungen
Welligkeitsamplitude zu hoch	Falscher Kapazitätswert, defekter Kondensator	Batterie abklemmen und mit DMM sämtliche Verbindungen überprü- fen; Kapazitätswert messen	
Zu starkes Breitband-Rauschen	Zu hohe Last, Störgrößen aus der Umgebung	Last und Störbeeinflussungen aus der Umgebung prüfen	Differenzielle Tastköpfe am Ausgang verwenden, um die Störbeeinflussungen aus der Umgebung zu reduzieren
Übergangsspitzen zu hoch	Zu hohe Lastinduktivität, Eingangs- strom nicht angemessen	Leitungsinduktivität prüfen und Eingangsstrom mit Oszilloskop überprüfen	

Tabelle 11

Signalverlauf am Eingang	Mögliche Ursache	Maßnahmen	Anmerkungen
Welligkeitsamplitude zu hoch	Falscher Kapazitätswert, defekter Kondensator	Batterie abklemmen und mit DMM sämtliche Verbindungen überprüfen; Kapazitätswert messen	
Zu starkes Breitband-Rauschen	Zu hohe Last, Störgrößen aus der Umgebung	Last und Störbeeinflussungen aus der Umgebung prüfen	Differenzielle Tastköpfe am Ausgang verwenden, um die Störbeeinflussungen aus der Umgebung zu reduzieren
Übergangsspitzen zu hoch	Zu hohe Lastinduktivität, Eingangsstrom nicht angemessen	Leitungsinduktivität prüfen und Eingangsstrom mit Oszilloskop überprüfen	

Tabelle 12

(5,0 V DC) kann die Tabelle 9 leisten.

Schritt 3b

Welligkeit der Ausgangsspannung prüfen: Mithilfe eines Oszilloskops oder eines DSO wird nun an den drei Ausgängen des MAX77642 die Welligkeit, d. h. der Wechselspannungsanteil der Ausgangsspannung gemessen. Um die Ausgangsspannung korrekt zu messen und das Einstreuen von HF-Signalen zu minimieren, wird eine differenzielle Messtechnik empfohlen.

Hinweis: Oszilloskop und Tastköpfe sollten eine Bandbreite von mindestens 200 MHz haben. Wenn die Schaltung korrekt funktioniert, sollte am Ausgang SSB0 eine Spannung von 1,8 V DC mit einer geringen überlagerten Welligkeit (siehe Bild 7) liegen.

Etwaige Probleme lassen sich mithilfe der Tabelle 10 diagnostizieren und beheben:

Wenn die Schaltung korrekt funktioniert, sollte am Ausgang SSB1 eine Spannung von 1,8 V DC (analog) mit einer geringen überlagerten Welligkeit (Bild 8) liegen.

Etwaige Probleme lassen sich mithilfe der Tabelle 11 diagnostizieren und beheben:

Wenn die Schaltung korrekt funktioniert, sollte am Ausgang SSB2

eine Spannung von 5,0 V DC (für LEDs) mit einer geringen überlagerten Welligkeit (Bild 9) liegen.

Etwaige Probleme lassen sich mithilfe der Tabelle 12 diagnostizieren und beheben:

Zusammenfassung

Hiermit endet die Artikelserie, in der fertig validierte, diskrete und integrierte Stromversorgungs-Schaltungen für die PPG-basierte Vitalzeichen-Fernüberwachung an Patienten auf der Grundlage der Bausteine MAX86171 und MAX86141 vorgestellt wurden. Für eine optimale PPG-Performance sorgen sowohl die integrierten als auch

die diskreten Schaltungsvarianten. Die integrierte Lösung aber zeichnet sich durch weniger Platzbedarf und einen geringeren Bauteileaufwand aus und wird deshalb für Anwendungen mit beengten Platzverhältnissen empfohlen.

Die entsprechenden Validierungstestdaten für die diskrete und die integrierte Implementierung sind auf der Website von Analog Devices zu finden.

Literaturnachweis

Power Supply Subsystems for Vital Sign Monitors und

Designing Accurate, Wearable Optical Heart Rate Monitors ◀